An ascidian homolog of vertebrate iodothyronine deiodinases.
نویسندگان
چکیده
In all classes of vertebrates, the deiodination of the prohormone T(4) to T(3) represents an essential activation step in thyroid hormone action. The possible presence of iodothyronine deiodinase activity in protochordates has been demonstrated in vivo. Recent molecular cloning of the genomes and transcripts of several ascidian species allows further investigation into thyroid-related processes in ascidians. A cDNA clone from Halocynthia roretzi (hrDx) was found to have significant homology (30% amino acid identity) with the iodothyronine deiodinase gene sequences from vertebrates, including the presence of an in-frame UGA codon that might encode a selenocysteine (SeC) in the active site. Because it was not certain that the 3' untranslated region (UTR) contained a SeC insertion sequence (SECIS) element essential for SeC incorporation, a chimeric expression vector of the hrDx coding sequence and the rat deiodinase SECIS element was produced, as well as an expression vector containing the intact hrDx cDNA. COS, CHO, and HEK cells were transfected with these vectors, and deiodinase activity was measured in cell homogenates. Outer-ring deiodinase activity was detected using both T(4) and reverse T(3) as substrates, and activity was enhanced by the presence of the reductive cofactor dithiothreitol. The enzyme activity was optimal during incubation between 20 and 30 C (pH 6-7) and was strongly inhibited by gold-thioglucose. The Halocynthia deiodinase appears to be a high Michaelis-Menten constant (K(m)) enzyme (K(m) reverse T(3), 2 microM; and K(m) T(4), 4 microM). Deiodinase activity was completely lost upon the substitution of the SeC residue in the putative catalytic center by either cysteine or alanine. Transfection of the full-length hrDx cDNA produced deiodinase activity confirming the presence of a SECIS element in the 3'UTR, as revealed by the SECISearch program. In conclusion, our results show, for the first time, the existence of an ascidian iodothyronine outer-ring deiodinase. This raises the hypothesis that, in protochordates, the prohormone T(4) is activated by enzymatic outer-ring deiodination to T(3).
منابع مشابه
New insights into the structure and mechanism of iodothyronine deiodinases.
Iodothyronine deiodinases are a family of enzymes that remove specific iodine atoms from one of the two aromatic rings in thyroid hormones (THs). They thereby fine-tune local TH concentrations and cellular TH signaling. Deiodinases catalyze a remarkable biochemical reaction, i.e., the reductive elimination of a halogenide from an aromatic ring. In metazoans, deiodinases depend on the rare amino...
متن کاملCharacterization of an iodothyronine 5'-deiodinase in gilthead seabream (Sparus auratus) that is inhibited by dithiothreitol.
Iodothyronine deiodinases catalyze the conversion of the thyroid prohormone T(4) to T(3) by outer ring deiodination (ORD) of the iodothyronine molecule. The catalytic cycle of deiodinases is considered to be critically dependent on a reducing thiol cosubstrate that regenerates the selenoenzyme to its native state. The endogenous cosubstrate has still not been firmly identified; in studies in vi...
متن کاملAscidian Homologs of Mammalian Thyroid Transcription Factor-1 Gene Are Expressed in the Endostyle
The endostyle is a special organ in the pharynx of urochordates, cephalochordates and cyclostomes. During evolution of the primitive chordates, the endostyle was organized in their common ancestor(s) with a shift to internal feeding for extracting suspended food from the water. In addition, the endostyle has an iodine-concentrating activity and is therefore thought to be functionally homologous...
متن کاملExpression profiles of the three iodothyronine deiodinases, D1, D2, and D3, in the developing rat.
Thyroid hormone (TH) is essential for normal development in vertebrate species. Although the mechanisms by which TH regulates developmental processes are not fully understood, intracellular T3 levels are likely to be a critical aspect of the process. Furthermore, as different tissues and organs have specific temporal patterns of development, their T3 requirements may vary widely. Differential r...
متن کاملCrystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism.
Local levels of active thyroid hormone (3,3',5-triiodothyronine) are controlled by the action of activating and inactivating iodothyronine deiodinase enzymes. Deiodinases are selenocysteine-dependent membrane proteins catalyzing the reductive elimination of iodide from iodothyronines through a poorly understood mechanism. We solved the crystal structure of the catalytic domain of mouse deiodina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 145 3 شماره
صفحات -
تاریخ انتشار 2004